
 

 

 

 

Name________________________ 

CSCI 151 

Exam 2 

December 17, 2021 
This is a closed-book, closed-notes, closed-Internet exam.   

 

The exam has 6 numbered questions; each is worth 16 points.  You get 4 points for free, for a 

total of 100  points.  

 

The last page of the exam is blank; you can use this for additional space for any of the exam 

questions. 

 

 

After you have finished the exam  please indicate whether you followed the Honor Code on 

the exam.   

   

I       □ did                    □ did not 

adhere to the Honor Code while taking this exam. 

 

 

                                                          __________________________________ 

                                                                                      Signature 

 

 

  



 
1. Here is a picture of a binary tree.  Give pre-order, in-order, and post-order traversals of 

this tree. 

 

 

Pre-order:  9 4 5 3 7 2 8 6 

 

 

In-order:  5 4 3  9 8 2 6 7 

 

 

Post-order    5 3 4 8 6 2 7 9 

 

 

 

  



2. We have discussed three O( n*log(n) ) sorting algorithms this semester:  MergeSort, 

QuickSort, and HeapSort.  Choose one of them – any one you wish.. 

 

A.  Describe in one or two sentences how this algorithm works. 

 

MergeSort: Split the list into two halves, recursively sort them, 

then merge them back together. 

 

QuickSort:  Choose one element as the “pivot”, rearrange the list so 

that everything less than the pivot is to its left and everything 

greater than the pivot is to its right, then recursively sort 

everything to the left of the pivot and recursively sort everything 

to the right of the pivot. 

 

HeapSort: Consider the list as a tree and “heapify” as a MaxHeap 

(i.e, largest element is at the root). Then repeatedly poll the heap 

and put the largest element in place in the list. 

 

 

B.  What is one feature of this algorithm that would either incline you to use it or not to use 

       

MargeSort.  Good: it is fast and easy to code. Always runs in 

O(n*log n)  Bad: it requires an additional list the same size as the 

one being sorted. Always runs in O(n*log n); doesn’t speed up if the 

list is almost sorted. 

QuickSort.  Good: sorts in place (no additional storage needed.  Bad 

doesn’t guarantee O(n*log n) performance. 

 

HeapSort. Good: fast, sorts in place, isn’t recursive. Bad: 

Complicated to code. 

 

 

 

 

  



 

3. Here is an AVL tree.  Draw the AVL tree that results from inserting 25 into this tree. 

 

 

 

 
 

1 

 

 

 

  



 

4. Here is a list of values and their hash codes: 

 

value 4 2 18 19 11 7 9 0 15 

hashcode 4 2 0 1 2 7 0 0 6 

 

Add these values from left to right (first 4, then 2, then 18 …) to the following hash table.  The 

small numbers are the table indices, so you don’t have to count across to see where an index 

such as 6 occurs. 

                                               0                 1                2                    3                 4                 5                  6                   7                 8 

18 19 2 11 4 9 0 7 15 

 

  



5. We have a linked list class based on the following structure: 

             class MyLinkedList { 

                              Node head, tail; 

                              MyLinkedList( ) { 

                                          head = new Node(); 

                                          tail = new Node(); 

                                           head.next = tail;  

                             } 

               …… 

             } 

To save space I am not going to write the Node class.  Nodes have an integer value data 

and a link next.  There are two Node constructors; one takes an integer argument and 

builds a Node with that value; the other takes no argument and builds an empty Node.  

You can directly access the fields of a Node: if x and y are Nodes you can say things like 

x.next = y; and x.data = 23.   

Here is a picture of a typical list.  Note that head and tail are empty sentinel nodes 

guarding the front and rear of the list; the list is empty when head points to tail. 

 

 
Give a method InsertInOrder(int d) for the MyLinkedList class that will insert a new 

element d into the list so that, if the list is ordered from smallest to largest before this 

method is called, then d will be inserted at a location that preserves the order.  For 

example, if we call InsertInOrder(25) with the list pictured, 25 will be placed between 20 

and 30. 

 

void InsertInOrder(int d) { 

Node p = head; 

Node q = p.next; 

while (q != tail &&  q.value < d) { 

 q = q.next; 

 p = p.next; 

} 

Node r = new Node(d); 

p.next = r; 

r.next = q; 

          }   

 



6. Here is a class for Binary Search Trees that hold integer values 

 public class BST { 

  int value; 

  BST left, right; 

  int size; // the number nodes in the tree with this as root 

 } 

Below is a picture of a tree using this structure.  Note that there is no EmptyTree class; 

empty trees are represented by null pointers.   Write a method for this class 

 int kth(int k ) 

that retuns the kth largest value in the tree. For the tree pictured kth( 0 ) is 4, kth(1) is 

10, kth(2) is 20 and kth(4) is 50. You can assume k will be between 0 and the size of the 

tree; you don’t have to test for that. 

 

                                           

A cheesy way to do this is to put all of the values into a list, sort the list, and return the 

value at index k.  Instead of that, I am looking for a recursive solution. 

int kth(int k) { 

 int lsize, rsize; 

 if (left == null) 

  lsize = 0; 

 else lsize = left.size; 

 if (right == null) 

  rsize = 0; 

 else rsize = right.size; 

 if (k == lsize) 

  return value; 

 else if (k < lsize) 

  return left.kth(k) 

 else // k > lsize 

  return right.kth(k-1-lsize); 

} 

  

 

 



 

 

 

   

 

 

 

 

 

  



You can use this   page for additional space for any question. 


